
Framework Programmable
Platform for the Advanced

Software Development
Workstation

_j

j.

!

rr

r
i

J

:7

I _ C'

C C C_

C_

,r_

ii: r*_ ,_j

.:_ ,_ _--

<_ _

_: k L

I :'C

J " 4

Integration Mechanism
Design Document

Richard J. Mayer
Thomas M. Blinn

Paula S.D. Mayer

Uday Reddy
Keith Ackley
Mike Futrell

Knowledge Based Systems, Inc.

June 17, 1991

Cooperative Agreement NCC 9-16
Resear_ Activity No. SE.37

NASA Johnson Space Center
Information Systems Directorate

Information Technology Division

0 ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

The
RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clcar Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Haman
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to

conduct needed research.
A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

Framework Programmable
Platform for the Advanced

Software Development
Workstation

Integration Mechanism
Design Document

Richard J. Mayer
Thomas M. Blinn

Paula S.D. Mayer
Uday Reddy
Keith Ackley
Mike Futrell

Knowledge Based Systems, Inc.

June 17, 1991

Cooperative Agreement NCC 9-16

Research Activity No. SE.37

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

0 0

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Richard J. Mayer, Thomas Blinn, Dr.

Paula S.D. Mayer, Uday Reddy, Keith Ackley, and Mike Futrell of Knowledge

Based Systems, Inc. Dr. Charles McKay served as RICIS research coordinator.

Funding has been provided by Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Ernest M. Fridge, of the Software Technology

Branch, Information Technology Division, Information Systems Directorate,
NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either express

or implied, of NASA or the United States Government.

Framework Programmable Platform for the
Advanced Software Development Workstation

Integration Mechanism Design Document

Produced For:

Software Tec,tmology Branch
NASA Johnson Space Center

Houston, TX 77058

Produced By:

Knowledge Based Systems, Inc.
2746 Longmire Drive

College Station, TX 77845-5424
(409) 696-7979

Dr. Paula Mayer, Thomas B!irm
Co-Principal Investigators

Under Subcontract to:

RICIS Program
University of Houston - Clear Lake

Houston, Texas 77058-1096
Subcontract Number 077:

Cooperative Agreement Number: NCC 9-16

March 18, 1991 -June 17, 1991

Framework Progrmmnable Platform for the

Advanced Software Development Workstation (FPP/ASDW)

Integration Mechanism Design Document

Produced For:

Software Technology Branch

NASA Johnson Space Center
Houston, TX 77058

Authors:

Dr. Richard J. Mayer
Thomas M. Blinn

Dr. Paula S.D. Mayer
Uday Reddy

Keith Ackley
Mike Futrell

Knowledge Based Systems, Inc.

2746 Longmire Drive
College Station, TX 77845-5424

(409) 696-7979

June 17, 1991

Table of Contents

1 Introduction 1
1.1 FPP Overview ... 1

1.2 Scope of this Document .. 2
1.3 The Nature of Design ... 3
1.4 Document Organization ... 3

2 Integration and Strategy ... 5
2.1 Characteristics of Integration ... 5
2.2 Integration Strategy .. 7

3 FPP PreliminAry Design ... 9

4 Integration Mechanism Design ... 15
4.1 Service Information Representation 15

4.1.1 Formats and Format Classes 16
4.1.2 Service Advertisements .. 18
4.1.3 Service Protocols .. 18

4.1.4 Service Contracts ... 19
4.1.4.1 Utilities ... 19

4.1.4.2 Argument Specification 20
4.1.4.3 Data Specification 20
4.1.4.4 Invocation Structure 20

4.1.5 Example Service Representation: Text2ps 21
4.2 Integration Mechanism Design Description 25

4.2.1 Design Considerations .. 25
4.2.2 Integration Service Plans .. 26
4.2.3 Integration Mechanism Design 27

4.2.3.1 Plan Builder Component 28
4.2.3.2 Plan Executor/Monitor Component 30
4.2.3.3 Decoder/Encoder Component 31
4.2.3.4 Service Registration Tool 32

5 Status and Future Directions ... 34

5.1 Outstanding Design Issues .. 34
5.2 Requirements Matrix .. 35

6 _nces ... 38

A Appendix A - Service Representation Language Gr_mm_r 39

B Appendix B - Integration Mechanism Functional Model 44

ii

IAst of F gures

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

FPP Conceptual Architecture ... 9

Current FPP Functional Architecture 11

Service Representation Schema .. 16

Service Representation for Text2ps 21

Operation of the Integration Mechanism 27

Operation of the Plan Builder .. 28

Operation of the Plan Executor .. 31

Service Registration ... 32

Integration Mechanism Requirements Matrix 36

iii

1

J Introduction

The Framework Programmable Software Development Platform (FPP) is a

project aimed at combining effective tool and data integration mechanisms
with a model of the software development process in an intelligent

integrated software development environment. Guided by the model, this

system development framework will take advantage of an integrated

operating environment to automate effectively the management of the

software development process so that costly mistakes during the

development phase can be eliminated. This Platform is being developed

under the Advanced Software Development Workstation (ASDW) Program

sponsored by the Software Technology Branch at NASA Johnson Space

Center. The ASDW program is conducting research into development of

advanced technologies for Computer Aided Software Engineering (CASE).

1.1 FPP Overview

The FPP was conceived in response to difficulties of producing software

systems. With the advent of more powerful and more economical computer
hardware resources, the complexity of software systems has increased

dramatically. As computer systems become more complicated, ensuring

that systems are produced in a consistent manner, on time, and within
budget, and ensuring that the system built is reliable and maintainable,

requires a considerable management effort.

One characteristic of large software systems is the inability of a single

person to fully understand the requirements, produce the design, and

develop the system. Instead, the system development process must be
executed by a team of managers and software engineers. Tasks within the

development can occur concurrently, except where certain tasks depend on

information produced by others. These interrelationships make the

management of the development process very difficult. Regardless of how
well a development project may be planned out, without some form of

control over the actions of the development team, costly mistakes and

setbacks are bound to occur during development. This is particularly true

in multi-year projects that suffer from management and technical team

leadership turnover.

One promise of Computer Aided Software Engineering (CASE) tools was to

assist project managers in monitoring the progress of the development

activities and in capturing the experiences of the development team.

However, the existing CASE tools fail to cover the entire software

development process and tend to concentrate instead on a particular aspect

of the development process (i.e., project management, requirements

analysis, code development and debugging). The result has usually been to
use a piecemeal collection of various CASE tools that addresses only

portions of the development process during the development of software

systems.

Introduction Knowledge Based Systems, Inc.

2

Many of these tools are quite useful within their specified area of the system

development process. A persistent problem with these tools, however, has

been in trying to use the tools in some organized fashion to fully automate

the system development process. Incompatible data formats along with the

misuse of tools make interaction among these different tools very difficult.

As a result, development of CASE environments that effectively automate

the software engineering process are nonexistent.

The recognition of these difficulties has spurred the development of the

FPP. The focus of the FPP is the management, control, and integration of

the software system development process. The major goals in this

definition of the FPP have been to provide:

° a realistic integration strategy that supports function and data

integration of a suite of tools (distributed and covering the entire

life-cycle);

• integrated access to and update of life cycle artifact data;

• control of life cycle activities and data evolution; and

° a site-specific development process support environment,

enforcing the rules and preferred methods of the organization.

The FPP is also expected to provide these capabilities in a distributed,

heterogeneous computing environment. Developing a platform that meets

these goals should result in (1) a reduction in the time required to produce

software systems, (2) an increase in the quality of the resulting software

systems, (3) a decrease in the maintenance effort for the resulting software

systems, and (4) an increase in the consistency in the development process
by which software systems are constructed.

1.2 Scope of this Document

Prior to the work presented in this document, work related to the FPP

focused on defining how the FPP should operate at a conceptual level and

then reducing those concepts to functional requirements. As the

conceptual design and requirements definition have been completed ([FPP
90a], [FPP 90b]), the FPP project is now entering the design phase. At this

stage, we will begin to define how operations and capabilities defined in the

Concept Document will be provided by components of the FPP.

The focus of this document is on the FPP Integration Mechanism. This

mechanism is responsible for providing a realistic and flexible integration

capability for the FPP. The Integration Mechanism will take a service

based approach to integration where the platform focuses on

advertisement, specification, and facilitation of integration services. These

services are functions and utilities provided by tools running on the
platform that support the sharing of data and functions between different

tools. It is through this approach that we feel realistic integration can be
provided.

Introduction Knowledge Based Systems, Inc.

3

A description of the mechanisms by which the Integration Mechanism will
represent, manage, and invoke these services is the main focus of this
document. Other information describing the integration services approach
and the relationships between the Integration Mechanism and other FPP

components are provided so that the discussion of the role of the Integration
Mechanism can be fully understood.

1.3 The Nature of Design

An iterative design approach being taken as the scope of the project is
broad. The iterative approach will allow the design team to examine

particular aspects of the FPP while making certain assumptions about
other components of the platform. As designs of components are completed
and new components are examined and detailed, the previous designs will
be re-examined to determine if the assumptions made during the design of

that component still hold.

This document is the first design produced as part of the overall FPP design
process. In light of the design process described above, this document can
be considered a "living" design. This means that revisions can, and
probably will, be made to this design. The changes that may occur will
expand and clarify the areas where the current design is lacking.

However, major revisions are not expected.

1.4 Document Organization

This document takes a top-down approach to describing the design of the
Integration Mechanism. The idea is to begin with a high level view of the
architecture of the overall FPP and then move lower into the more detailed

definition of the Integration Mechanism. The higher level descriptions will

provide the boundary and scope for the design of the Integration
Mechanism presented at the lower levels.

The discussion begins in Section 2 by addressing the areas that the

Integration Mechanism is trying to address. This sections presents a
discussion of what an integrated system should be and then discusses the

strategy to be incorporated by the FPP to provide these integration
characteristics. An understanding of this strategy is necessary to follow
the design of the Integration Mechanism.

Section 3 presents the design of the overall FPP. The FPP design presented
is by no means complete. Instead, it describes the current architecture of
the FPP and describes the functional roles of each component currently

identified as part of the FPP. Understanding of the roles played by the
various parts of the FPP is important to understand the design of the
Integration Mechanism presented in Section 4. The Integration
Mechanism design was developed under the assumption that certain

Introduction Knowledge Based Systems, Inc.

4

functions would be provided by these other components of the FPP. Without

knowing the roles of these other components, understanding the

Integration Mechanism design would be difficult.

The presentation of the Integration Mechanism in Section 4 is divided into

two subsections. The first subsection discusses the representation

language for services. The Integration Mechanism revolves around the

management and manipulation of integration services. As a result, the

structure of the representation of these integration services is very

important to the operation of the Integration Mechanism. The discussion

of the service representation language is followed by a discussion of the

current functional breakdown of the Integration Mechanism. The IM has

been partitioned into four components and the role of each component is
discussed.

Finally, Section 5 presents the current status of the Integration Mechanism

design and points out where future work concerning the FPP project as a

whole and the Integration Mechanism design as a part will be directed.

Also, two appendices provide more detailed specifications of the design of

the Integration Mechanism. Appendix A presents the grammar for the

Service Representation Language that is introduced in Section 4.1.

Appendix B presents an IDEFO Functional Model of the Integration
Mechanism design that is presented in Section 4.2.

Introduction Knowledge Based Systems, Inc.

5

2 In_tion and Str.atcLrv

A key concept in any strategy to control the software development process
centers around integration - integration of CASE tools; integration of

project tasks; or integration of data artifacts. As these different "levels" of
integration show, integration encompasses many different aspects of
system development (tools, tasks, and artifacts). Therefore, before a
discussion of the design of the Integration Mechanism is presented, a
discussion of integration and the aspects of integration that the Integration
Mechanism will address is provided.

2.1 Characteristics of Integration

One of the lessons learned over the past 15 years, relative to integrated
information systems, is that the term "integration" itself has no canonical
meaning. The development an integration strategy requires that the
characteristics of integration be identified up front. The following
paragraphs describe some characteristics that one would be expected of a
system that was integrated.

An important note must be made at this point. Despite being labeled
"Integration Mechanism", the Integration Mechanism will not entirely
address each of the characteristics described below. The Integration
Mechanism directly relates to those characteristics that involve interaction
and data exchange among various tools running under the FPP. This does
not mean that the other characteristics of integration will not be addressed
by the FPP. Instead, these other aspects of integration will be present in
other components of the FPP. The purpose of this section is to describe the
characteristics of integration that the FPP is attempting to address and to
show where the Integration Mechanism will be used to support those
characteristics.

Sharing of Common Data. Perhaps the most beneficial integration
characteristic, the ability to share common data is critical to the success of
an integration platform. It would appear that the most important aspects
of this characteristic are that data need be input only once, only stringently
controlled duplication of data is allowed, and only organizational policy
restrict access to the data (not technological barriers). These aspects of
sharing data place requirements across the entire FPP system. The
Integration Mechanism will be directly involved in providing a single data
entry point by supporting the transfer and translation of data between
different applications running on the platform. The Integration
Mechanism will play a secondary role in the control of data duplication.
Control of data duplication will be the responsibility of the data
management components of the FPP. While data management
components will also enforce data access control, the Integration
Mechanism will adhere to access control policies based on the access
privileges of the user.

Integration and Strategy Knowledge Based Systems, Inc.

6

Rights to Privacy. In spite of the heavy emphasis on the shareability of data

and computing resources, the expectations of an integrated system include

an assurance of individual rights to control access to certain premature or

sensitive data. Again, the Integration Mechanism will not be responsible

for the control of this private data, but the manipulation of this data will be

controlled by the Integration Mechanism. The reason for this is that the

Integration Mechanism has been designed to manipulate data independent
of the source of that data.

Support Flow of Work. A basic assumption of an integrated system is that it

possess (or be built around) an accurate model of the organization it

supports. In fact, some of the earliest uses of the term "integrated system"

referred to manufacturing systems where the physical organization of the

facility and the design of the material handling system were designed to fit

closely with the process flow of the product. Integration supports the flow of

work by allowing data object or artifacts produced at one stage of the

development process to be accessible to team members working on another

stage of the process. Support for flow of work will be shared between the

data management and the Integration Mechanism components. Data
management functions will provide support for the management and

control of the life cycle of these artifacts. The integration Mechanism will

allow data to be accessible to various CASE tools at different stages of the

development process. This capability allows data to be distributed along the

development path.

Support Change Propagation. In a manner similar to the support of flow of

work, integration also implies support for change propagation. By

maintaining relationships between data artifacts (and having an accurate

and usable internal model of change semantics), modification to one

artifact can be propagated to other artifacts that are related to it. To support

change propagation, the definition of the relationships between data

artifacts must be provided. The Integration Mechanism will not be

responsible for managing and controlling these relationships between data

artifacts as this functionality is reserved for the data management

components. However, the Integration Mechanism will allow for the

creation of relationships between two artifacts when an integration

operation is performed.

Flexibility with Respect to Change. An integration system is normally

assumed to have a degree of flexibility associated with it. This

characteristic of flexibility is a measure of how easily the system can be

expanded, contracted or evolved to respond to new requirements. For

example, a system to integrate three specific tools produced by a single

vendor would not be as flexible as an integration system that should be able
to integrate any number of tools from any number of vendors. The degree of

flexibility an integrated system exhibits usually determines the life-span

and scope of application of that system design. Support for flexibility of the

integration platform will occur at two levels. Through the Framework

Integration and Strategy Knowledge Based Systems, Inc.

- 7

Processor, the platform will be programmable with a system development
framework. This programming will configure the platform to effectively
control and manage the development process. Changes to the framework
will reconfigure the platform to reflect the changes in the development
process. While this flexibility allows the process to change, it does nothing
for the addition of new tools and expansion of the functions provided by the
platform. It is directly through the Integration Mechanism that flexibility
with respect to tools will be provided. Protocols have been established that
allow tools and functions to be generically represented within the

Integration Mechanism. This generality allows tools to be incorporated
into the platform regardless of their vendor or external interfaces.

2.2 Integration S_'ategy

Now that an understanding of the type of functionality the Integration
Mechanism is intended to provide, a discussion of the strategy to be used to
provide this functionality would be useful. It is our thesis that the
integration of an application into a software engineering platform should be
viewed as an opportunity to provide greater functionality to that system by
providing new services and resources. With a service based approach to
information integration, an application simply advertises the services it
will provide, as well as the invocation procedures for that service. In
essence, the advertisements define external interfaces that allow other tools
or users to take advantage of the functionality provided by the new
application. The integration platform provides the required support for
organizing and maintaining these interface definitions, as well as for
routing the integration service requests.

The integration services approach represents a new way of looking at the
integration problem. Rather than focusing on the construction of an
"integrated system", the focus is on the "integration services" that the
integration platform and functional applications provide. In previous
approaches to integrated systems architectures, the burden was assumed
to be on the platform to provide the integration support desired [EIS 86],

[I2S 2 85], [IDS 89]. This traditional approach has severe problems. One of
the problems is the need to define, in advance, the comprehensive
standards and to build applications that meet these standards. This
presumes that an organization can foresee, (a) the integration services that
are required, and (b) the relative demands for those integration services.
Presuming we could solve (a) and do not know the answer to (b), the
traditional integration approaches force an equivalence of integration
support across all needs. This implies a massive overhaul of existing
legacy systems and unjustifiable modifications by vendors of their existing
systems to achieve even a minimal level of integration support.

Historical experience, trends in the software industry, and the explosive
demands of organizations for information services indicate that this
traditional approach just won't work. What is clearly needed is an
approach where such services can be incrementally introduced as the user

Integration and Strategy Knowledge Based Systems, Inc.

8

demand forces suppliers of the needed services to provide it. The key is the
establishment of the appropriate guidelines and structures for representing
and executing these services. The result is that, once the expense of setting
up a service has been incurred, that service is available to all subscribers
and thus the provision of services evolves in an organized fashion.

This flexibility is also important when concerned with the overall
development process. Previous integration efforts have focused on a
particular domain and how elements within that domain interact [EIS 89],
[CFI 91]. This vertical integration, while important and useful, does not
address how the various domains (project management, design,
implementation, testing, documenting) interact. A problem with
integrating systems from these different areas is that, generally, it is not
clear when and where tools should be integrated. To develop an integration
strategy supporting the interaction of these tools would require a detailed
analysis of the overall process involved. However, with the integration
service approach, this analysis is not required. Instead, services
supporting known interactions can be provided initially and new services
developed as the demand arises.

This flexibility is especially important to the Framework Programmable
Platform. The premise of the FPP is that the platform can be configured
based on the development practices and policies of the enterprise. As a
result, the process by which available services can be used is configured by
the site specific framework. The flexibility of this service approach allows
the access to services to be configured when the site specific framework is
installed. Another critical problem with the vertical approaches is their
lack of facilities for managing the evolution of the system (product)
definition within a large team development activity.

Integration and Strategy Knowledge Based Systems, Inc.

9

FPP PreliminAry D_'it_rn

Preliminary work on the design of the overall FPP was required before work

could begin on the design of the Integration Mechanism, . This platform

design was required to bound and scope the Integration Mechanism.

Figure 1 shows the original, conceptual architecture for the FPP. This
architecture identifies the major components of the FPP and their

relationship to each other.

z

LAN

USER INTERFACE

USE MACRO DEFN LANG.

SESSION MANAGER

FPP/ASDW System
Description Componen!

SSF det'med Data Access

Control & Management

INTELLIGENT
DESIGN SUPPORq

TMS

Situation
Reasoner /
Representation

Rete Rule Sys

Temporal
Reasoning

Search
Algorithm

Constraint

Propagation

IDEF Modeling
tools

Design
Modeling tools
Requirements
Decision tools

Engineering
Modelers

Simulation Model
Generators
Business
Application Code
generators

Real Time Control
Code Generators

Upper and Lower
CASE Tools

m

J

OBJECT MANAGER

EVOLVING SYSTEM DESCRIPTION MANAGER

LOCAL
PERSISTANT
OBJECT
MAP

INTEGRATION
SERVICES
MANAGER

INTEGRATION
SERVICES
PLANNER

Apollo

-- Macintosh

-- PC

-- IBM Repository

-- IBM - IMS / DB2

-- Vax

-- Sun

Figure 1.

LOCAL[
DATA I

MGRS]

FPP Conceptual Architecture

FPP Preliminary Design Knowledge Based Systems, Inc.

10

The design process began with an examination of this conceptual

architecture. While this diagram presents an overall view of the system
operation, it is difficult to work with when attempting to formalize a design

for the FPP. Closer examination of the conceptual architecture resulted in

a separation of applications from underlying platform functionality. This

mostly involved removing the upper-right quadrant of the diagram and

examining what was left. Conceptually, this was an important distinction.

This forced the design team to treat applications generically, which is

especially important to the service integration strategy.

The result of this examination and separation is shown in Figure 2. The

diagram represents the functional architecture where each box in the

diagram represents a functional unit and the links between the boxes

represent communication between those functional units. It should be

noted that this architecture is a derivative of the Design Knowledge

Management System platform architecture that KBSI is currently

developing for the Air Force [DKMS 90]. The approach in the FPP project

has been to leverage off of the DKMS effort by first adopting the integration

strategy of the DKMS and then layering the framework programmability on
top. A discussion of this architecture is required to set the context for how

the Integration Mechanism fits in with other components of the FPP. The
remainder of this section will be dedicated to this discussion.

The FPP Session and Application represent the external interfaces to the
FPP. The FPP Session serves as the users direct link to the FPP

environment while the Application component represents the interface

through which applications would gain access to the FPP functionality.

Through this module the user could browse the database, services, users,

hosts, tools, etc. The user could also set up protection for groups working

on data sets, etc. The user could invoke the Integration Mechanism to

generate a service plan on a data set. Application programmers, can

incorporate this plan in their code. Plans embedded in application

programs would be checked for feasibility at the time the application is

launched and when the plan is executed. Infeasible plan segments are

trapped and the user is allowed to suggest an alternative action which

could include replan, ignore, abort, etc.

The Integration Mechanism is responsible for monitoring and controlling

the generation and execution of integration service plans. Conceptually,

the Integration Mechanism can be partitioned into an Integration Services

Manager and an Integration Services Planner (the design actually

partitions the Integration Mechanism into several different components,

see Section 4.2.3). The Integration Services Manager is responsible for

receiving and executing integration service requests. In doing this, the

ISM spawns background plan management processes for each request,

monitors the progress, and collates the results of the request. Part of the

process of providing a service is the generation of general service and
executable plans. This task is delegated by the Integration Mechanism to

FPP Preliminary Design Knowledge Based Systems, Inc.

_ 11

the Plan Builder. During plan generation, two planning processes take

place. The first is the generation of a service plan, whereby the Plan
Builder determines whether advertised services exist. If this first process

completes successfully, the more detailed executable plan generation
process begins, where the actual machines, resources, and utilities needed

to provide the service are determined.

i!ii;_i:iieii;i_;ii; i_i!iiii_!i!!!;_;!_il..?i_i!ii _i;i;iii;i;iiiii_i_iiiii_
!i!_!iiii![i;iiiiiii _[iiiii;i_!_ili_:,.';ii_ii:i:iiiiiil _iiii;iiiiii;i_iii:i:i:i:

iiiiiiiiiiiii!_:i_i_iiiiiiiiiiiiiiiiiiiiiiiiiiiii:: _._i_i_i_i_i_i_;_:_:_i_i_i_i_i_i_ii!i_i!_i_ii_i_i_!_.. .3i:;:i:i:i:i:i:_:!:iii:i:_:i:i:i:i:i:i:_:i_:i:ii!:i:i:i:

/
[Network Trans. Manager []File/Database Manager]

/

To other
network

managers

Figure 2. Current FPP Functional Arc_tecture

The Data Object Manager (DOM) is responsible for the management of life
cycle data artifacts. In managing life cycle artifacts, the DOM will provide

functionality for registering data artifacts in the repository and to maintain
access control over the artifacts. The controlled nature of these artifacts

managed by the DOM allow relationships between artifacts to be

maintained. One of the most important relationships to be supported by the

DOM will be dependency relationships between artifacts. Other
relationships include configuration and versioning relationships. To

maintain consistency in the constraints and relationships defined on data

FPP Preliminary Design Knowledge Based Systems, Inc.

12

artifacts, an inference engine will be required to support the DOM. This
inference engine supports both truth maintenance and constraint

propagation.

The DOM will also be used to manage system resource artifacts. The need

to do this stems from the fact that the FPP operates in a distributed

environment. The namespace for the DOM, as a result, will be distributed

across all nodes of the platform. To take advantage of this single repository
and eliminate the need to store system resource data on every machine, the

DOM will manage these artifacts. However, to improve performance, FPP

components may cache this information at system startup.

It is difficult to call the Framework Processor a distinct component of the

FPP. While it is true that some framework specific functionality will be

required to load a framework and to configure the platform based on that

framework, the burden will be on the other components of the FPP to
adhere to the requirements of the framework. So, instead of a framework

processor controlling the operation of every component, each component
will access the information about the framework to ensure that the

constraints of the framework are not violated. In light of this role, the

framework processor would simply respond to queries from the various
components about the framework contents.

The Facilitator serves as a dispatcher of messages between higher level
components (DOM and Integration Mechanism) and the lower level

components (Data Managers and Network Transaction Manager). This

separation between higher and lower level components is required since the

Data Managers and Network Transaction Managers will be more machine

dependent than the more portable DOM and Integration Mechanism. The
Facilitator will provide a common interface between these two levels so that

the impact of changes in one level will be reduced, if not eliminated, in the
other level.

The distributed nature of the FPP also makes the Facilitator necessary.
When accessing data, whether that data resides on the local machine or on

a remote machine should be transparent to the DOM. To hide the location

of the data from the DOM requires an intermediate party to parse the data

id and route the data query to either the appropriate machine (through the

Network Transaction Manager) or the appropriate data manager on the
local machine.

The Facilitator also serves as the interface between the FPP and

File�Database Managers running on the machine. This architecture

allows the host file system and different database managers to be used for
FPP data storage. The location of the data will be encapsulated in the data

ID. The Facilitator will extract the location and formulate a query based on

the query structure of the database manager. The query will then be passed
to the appropriate manager where the data will be collected and returned to

the Facilitator. The FPP components will be taking advantage of object-

FPP Preliminary Design Knowledge Based Systems, Inc.

13

oriented databases to maintain knowledge about data artifacts and system

resources. KBSI has initially targeted the Itasca database for the Sun

workstation and the Statice database for the Symbolics workstation.

The Network Transaction Manager is responsible for sending and

receiving network operations for the local machine. The operations might

include data queries or updates to database managers running on other

machines, request for service execution on remote machines, or simple
network file transfer operations. The NTM is only accessible through the

Facilitator. From the message ID, the Facilitator determines that the

message requires a remote transaction. The message is passed on to the
NTM where the message is encapsulated into a network packet and sent to

the appropriate machine. When the remote machine receives the message,
the network packet is decoded by the remote NTM, the contents are passed
to the remote Facilitator, and the message is sent to the appropriate FPP

component on the remote machine.

It is expected that the Network Transaction Manager will be built on top of
the CRONUS distributed operating system. The advantages of using
CRONUS include the fact that CRONUS is object based, making it easily

integratable into our system design. CRONUS also provides a common

network protocol across heterogeneous workstations (including Symbolics,
Sun, and DEC) that will make the generation of portable Network

Transaction Managers easier. Finally, CRONUS provides a higher level of
abstraction from the low level network protocols that will allow more

powerful network operations to be performed more easily.

The Knowledge, Information and Data Stores will store the data artifacts

being maintained and controlled by the FPP. These stores will not only
contain the data artifacts themselves but will also include data and

knowledge necessary to manage those artifacts. The management
information will include access control information, audit trail

information, configuration and version control information, as well as

dependency relationship information. Rules and constraints for the

manipulation and management of these data artifacts will be established by

the Site Specific Framework.

The System Resources Definition repository will contain information

required by the FPP to operate. This would include knowledge about tools,

applications, services, hosts, and database servers operating under the
FPP. These resources would also contain information about FPP users and

groups. The distribution of this information has not been established yet. It
would be advantageous to have a single repository of information to

eliminate inconsistency. However, central location of data can serve as a

bottleneck in system performance. For one case, it is expected that the

integration service information will be maintained on the machine that the
service actually executes on. But since the service knowledge is maintained

by the DOM, access to the service information will be available to all

FPP Preliminary Design Knowledge Based Systems, Inc.

14

machines and therefore to the Integration Mechanism running on that
machine.

There are basically three sources for the information contained in the

System Resources. The first is the Site Specific Framework. This

framework will define the user roles, methods, and system configurations

that will be operable at the particular site. The second major source is the

system installation procedure. When the FPP is installed, it must be
configured. Part of this configuration process will be the definition of the

hardware and software resources available to the FPP. Finally, the third
source of information will be the maintenance activities. This will include

adding new machines to the platform or adding and defining new services
for the platform.

FPP Preliminary Design Knowledge Based Systems, Inc.

I 15

4 Intem-ation Mech_,ni_m Desi_rn

Once the general structure and functional breakdown for the components of
the FPP had been established, work on the formal design of the Integration
Mechanism began. Section 2.2 describes the integration strategy to be
implemented by the Integration Mechanism. Designing a system to
support the integration services approach requires that a definition of what
a service is and how a service can be represented be derived. Once the
required knowledge has been identified and a structure for representing
that knowledge has been defined, the design of a system to generate and
execute plans based on those structures can proceed.

The discussion of the design of the Integration Mechanism will follow

closely this two phased approach. The discussion will begin with the
definition of the structure and content of the information maintained about

integration services. This discussion will be followed by a description of the
functional components of the Integration Mechanism and how these

components will use service knowledge to support the integration services
strategy.

4.1 Service Information Representation

For the Integration Mechanism to generate and execute service plans, it
must have access to data about the service utilities managed by the FPP.
The Integration Mechanism must be able to determine what each utility
does, what arguments it requires to execute, the format for its inputs, and
the format of its outputs. A structure is needed to capture this information
and to support the efficient generation of service plans.

The structure that has been developed for capturing service information is
displayed in the service representation schema shown in Figure 3. The
schema consists of six interrelated objects: format class, format, service
advertisement, service protocol, service contract, and utility. Each and

every service registered with the FPP will be required to provide this
information in order for the service to be accessible to users. However, this
information will only have to be provided once.

It is important to note that, at present, this schema represents an internal
representation of the service knowledge. The form by which this
information will be presented to the FPP has not yet been established,

though a language has been defined for the representation of Service
Contracts (see Section 4.1 and Appendix A). It might be possible that the
service registration format could simply be a form to fill in, similar to the

structure shown in Figure 3. More than likely, however, automated tools
for registering and entering this information will be provided. See Section

4.2.3.4 for more information about the service registration process.

Integration Mechanism Design Knowledge Based Systems, Inc.

6

Format Class

name:

formats:

key:

Format

name:
version:

primary class:
filter:

can be treated as:

Service Advertisement

source format class:

destination format class:

protocols:

Service Protocol

source format:
destination format:

contracts:

Service Contract

utility:

argument specification:
data specification:
invocation structure:

utmty
name:

version:

resources:

host:

location:

environment specification:
termination codes:

string
set of <format>

type

string

string
<format class>

predicate
set of <format>

<format class>

<format class>

set of <service protocol>

<format>

<format>

set of <service contract>

<utility>

set of argument abstractions
set of data abstractions

set of argument labels

string

string

hardware/software specs
hostname

pathname
set of environment specs
set of exit codes

Figure & Service Representation Schema

4.1.1 Formats and Format Classes

From an abstract point of view, the execution of a function or use of an

application can simply be viewed as a transformation of information from
one (input) format to another (output) format. In many situations, this

view is not important. For example, Microsoft Word was used to prepare

this design document. When the document is opened for editing, the input

Integration Mechanism Design Knowledge Based Systems, Inc.

_ 17

format is Microsoft Word and when the document is closed, it is still in

Microsoft Word format. So, actually, no translation has taken place.

It is only when data needs to be moved across tools that this view becomes

particularly important. Using a similar example, let us assume that the

same Microsoft Word document needs to be included as part of a TeX

document being prepared on a Unix Workstation. Since the document is

currently in Word format, it is not usable as part of the TeX document. So,

a possible option is to open the Word document and then save the file out in

an ASCII text format that could be incorporated into TeX. In this instance,

the design document has undergone a transformation from Microsoft Word
format to ASCII text format.

Using this idea, a format-based service representation system has been

developed for the Integration Mechanism. This representation of
integration services revolves around Formats and Format Classes. A

Format is a name for a specific data representation and a Format Class is

simply a group of closely related Formats. For example, format classes

might include IDEF_, Postscript, IGES, and Text. However, within the

IDEF_ format class, formats might include AI_ v2.3 Btrieve, IDEFINE 1.6,

and Modeler 1.0. Within the Postscript format class, formats could be
Adobe PS 4.3 and TGPS 1.1.

A Format Class is represented by three pieces of information: a name, a set

of formats, and a key. The name simply serves as an identifier for the

format class and will be used for planning purposes. The set of formats
maintains the set of formats that are part of the format class. Finally, the

key captures the type of object that the format represents. For instance, in

our Word example above, the key would be "pathname" since the Microsoft

Word format represents a file.

The representation of a Format is somewhat more complex than for a
Format Class. Like a Format Class, a Format also has a name identifying

the format, but, unlike the Format Class, a Format may have a version

number associated with it. This version is important when different

versions of the same tool are running under the FPP. The primary class
slot of a Format captures the Format Class to which the format belongs.

Semantically, a format may belong to only one class. However, the format

may be syntactically equivalent to many other formats. This is what the

"can be treated as" slot of the format structure captures. For example, an

AI_ v2.3 Btrieve file is a specific representation of an IDEF_ model and its

primary class is IDEF_. However, the file is stored in a Btrieve database
format, and the AI_ v2.3 Btrieve file can be used in the same utilities that

can use Btrieve database files. Therefore, the AI_ v2.3 Btrieve file can be

treated (syntactically) as a Btrieve database file. Finally, the "filter" slot

captures any information about constraints on the format. For instance, a

utility may produce output in a specific format, but may have only produced

certain pieces of information. The filter would specify what data had
actually be produced.

Integration Mechanism Design Knowledge Based Systems, Inc.

18

One issue that has not been completely resolved involves formats and

format classes. It is not always the case that a format or a format class will

have a recognizable name. The names of formats are critical for service

planning as the names determine whether two services manipulate the
same format and therefore can be executed in sequence. For industry

standard formats like PostScript, this is not a problem. It is possible,

though, that different services could use formats that have no standard

name and may be equivalent. The service planning requires that some

means for determining equivalence between formats is provided. With the

current representation scheme, the equivalence test is simply equality of
format or format class names. It remains to be seen whether more robust

equivalency procedures are required for formats and format classes.

4.1.2 Service Advextisements

Service Advertisements describe sets of service protocols that have been
defined between format classes. Each service advertisement serves as a

bridge between two Format Classes and captures all operations that can
occur between the two Format Classes. A Service Advertisement

maintains three things:

1) source format class - the format class that input to services

adhering to this advertisement must be a member of;
2) destination format class - the format class that output of services

adhering to this advertisement must be a member of; and
3) set of protocols - a list of all service protocols that adhere to this

advertisement.

When the Integration Platform attempts to generate a plan, it scans the list
of service advertisements to determine if there is a path from the source

format class to the destination format class. If a path is found, the

Integration Mechanism then examines the service protocols (as described
in the next subsection) associated with the service advertisement to

determine which service to invoke.

4.1.3 Service Protocols

Service Protocols describe sets of service contracts that exist between two

formats. Each protocol is a member of the set of protocols defined for a

service advertisement. As a result, the protocol captures services that

transform data maintained in the source format class of the parent service
advertisement to data maintained in the destination format class of the

parent service advertisement. A service protocol is represented by the

following pieces of information.

1) Source Format: The format that input to services adhering to this

protocol must be. This format will be an instance of the source
format class of the parent service advertisement.

Integration Mechanism Design Knowledge Based Systems, Inc.

_ 19

2) Destination Format: The format that output of services adhering

to this protocol must be. This format will be an instance of the
source format class of the parent service advertisement.

3) Set of Contracts: A list of all service contracts that adhere to this

protocol.

The Integration Mechanism searches through the service protocols for a
given service advertisement to find which contracts might be invoked to
satisfy a service request. If it finds a service protocol that represents the
desired service (eg. text to Adobe Postscript 2.1), it then examines the
contracts (see the next subsection) associated with the service protocol to

determine which utility to invoke to perform the needed service.

This "hierarchical" organization of Formats and Format Classes and of
Service Advertisements and Services Protocols is designed to narrow the
search required when attempting to generate a service plan. Planning
involves searching through the integration services to determine if an

operation using the appropriate formats exists. By organizing service
protocols that link two formats under a more general service advertisement
that links two format classes allows a two-tiered search strategy. At the
first level of search, only the service advertisements are searched. It is only
when an advertisement linking the two format classes has been found that
the search moves to examining the service protocols. Through this
approach, a large number of services can be eliminated from the search
space and faster integration plans can be generated.

4.1.4 Service Contracts

While the previous structures have focused on representing services for
planning purposes, the Service Contract is concerned more with capturing

information necessary to actually execute a service. These contracts specify
to the Integration Mechanism what information must be collected in order
to invoke the utility and how to actually perform the invocation once the
information is collected. These service contracts represent actual
executable utilities and organize information about these utilities into four
units of information: the utility, the argument specifications, the data
specifications, and the invocation structure. The four units are discussed
in the following subsections.

4.1.4.1 Utilities

The Utility is a service representation structure that captures hardware
and software information about specific utilities that provide service to the
FPP. The information required to register a utility is relatively
straightforward and is enumerated below.

1) Name: The name of the utility or tool.
2) Version: The version of the utility or tool. Different versions of the

same tool may exist in the environment.

Integration Mechanism Design Knowledge Based Systems, Inc.

2O

3) Resources: The prerequisite hardware and software resources

needed for the utility to execute properly (i.e., memory, etc...).

4) Host: The machine on which the utility resides and runs.

5) Location: The pathname of the utility on the host machine.

6) Environment Specification: These specifications define the state

that the host machine must be in to execute this utility properly.

7) Termination Codes: These codes represent values that will be

returned from the execution of the utility so that the Integration
Mechanism can determine the context of the termination (i.e., did

the utility terminate normally).

This information would be used by the Integration Mechanism to first

determine if the service can be run locally or must be run remotely. Having

established that, the information would be used to configure the

environment so that the spawned service execution process will execute

properly.

Note: The following three subsections discuss the argument specification,

data specification, and invocation structure components of a Service

Contract. The structures for defining this information are a modified form
of the CAD Framework Initiative Tool Encapsulation Specifications [CFI

91]. The grammar for the modified language to be used by the FPP is

presented in Appendix A of this document.

4.1,4.2 Armament Specification

In order for the Integration Mechanism to invoke utilities, it must
understand their invocation protocol (command line syntax or program call

interface) and be able to supply the appropriate arguments as needed. The

argument specifications of a service contract define what, if any,

arguments are required by the utility. The service contract would contain a

single argument specification for each argument to the utility.

4,1.4.3 Data Specification

The data specifications define the input and output parameters for the

utility along with the type of those parameters. These data parameters

must correspond directly with the keys in the format class specifications for
this utility. Failure to match these data specifications with the key of the

format class will result in a registration error, as the two formats will be

incompatible. The service contract would contain a single data

specification for each input and output parameter of the utility.

4.1.4.4 Invocation Structure

When the argument specifications are defined, the arguments can be

entered in any order. Nevertheless, it may be the case that the utility

requires that arguments be placed in a specific order. The argument

Integration Mechanism Design Knowledge Based Systems, Inc.

21

sequence for the utility is specified with this invocation structure. There

will be a single invocation structure for each service contract.

Format Class: <fcl> Format Class: <fc2>

name: text name: postscript
formats: (<fl>) formats: (<f2>)

key: pathname key: pathname

Format: <fl> Format: <f2>

name: ASCII text name:
version: n/a version:
primary class: <fcl> primary class:
filter: none filter.
can be treated as: n/a can be treated as:

Service Advertisement_ <sal>

source format class:
destination format class:

protocols:

Service Protocol: <spl>
source format:
destination format:
contracts:

Service Contract- <scl>

utility:
argument specification:
data specification:
invocation structure:

Utility:

name:
version:
resources:
host:
location:
environmental specification:
termination codes:

Adobe Postscript
2.1
<fc2>
none
n/a

text

postscript
(<spl>)

<fl>

<f2>
(<scl>)

[specified elsewhere]
[specified elsewhere]
[specified elsewhere]

text2ps
1.04
IBM PC compatible, MSDOS 3.0 or higher
MTF/KAA PC

c:\bin\text2ps.exe
none

none

Figure 4. Service Representation for Text2ps

4.1.5 Example Service Representation-" Text2ps

The representation of service information is quite complex. In light of the

complexity, an example may describe the representation better than the

previous discussion. This section presents portions of service

representation image for a PC-based text to postscript conversion utility

Integration Mechanism Design Knowledge Based Systems, Inc.

22

called text2ps. This example is intended to show how the structures

described in the previous sections will appear when actual integration
services are registered with the FPP.

Service Representation

Figure 4 shows the service representation image for text2ps. Text2ps takes

an input format of ASCII text, which is part of the format class text. It

produces output in Adobe Postscript 2.1 format, which is part of the format

class postscript. The advertisement for the Text to Postscript service

currently states that only one service protocol has been registered for this

service. That protocol, in turn, states that only one contract has been

registered to provide the ASCII Text to Adobe Postscript format translation

service. That contract is the text2ps utility we are describing. The text2ps,

version 1.04 runs on an IBM PC compatible, resides on the MTF/KAA PC,
is located a c:\bin\text2ps.exe, and has no environmental specifications or
termination codes.

Argument Specification

The text2ps utility has twelve arguments that may be specified on the
command line. For our purposes, we will show the argument

specifications for four of these arguments. Each argument specification

refers to a specific command line argument. The order in which the
argument specifications appear is the order in which the user (or

framework) will be queried.

Partial set of Argument Specifications for text2ps:

;;; the -v argument tells the utility to print version information.

;;; no other options may be specified with -v.

(arg_boolean version
(if_true "-v")

(if false)

(default false)

(label "show tool version"))

;;; the -? argument is used to print a list of the command

;;; arguments for the utility.

(arg boolean Hstargs
(if_true "-?")

(if_false)

(default false)

(constraint (string_equal (value version)))

(label "show command arguments"))

Integration Mechanism Design Knowledge Based Systems, Inc.

- 23

;;; the rotation angle specifies page rotation for the output

(arg_integer rotation_angle
(condition (clause (not (equal rotation_angle 0))

(concat "-r" rotation_angle)))
(default 0)

(range (between (at_least 0) (at_most 90)))
(repeat (exactly 1))
(constraint (or (stringequal (value version))

(string_equal (value listargs)))

(label "page rotation angle (in degrees)"))

;;; the -f option specifies the font for the output. Notice that "Times
;;; Roman"is the default value.

(arg_choice font_name
(choice

(if_true "-f Courier")
(default false)
(label "Courier"))

(choice

(if_true "-f Helvetica-BoldOblique")
(default false)

(label "Helvetica Bold Oblique"))
o,,

(choice
(iftrue "-f Times-Roman")
(default true)
(label "Times Roman"))

(repeat (exactly 1))
(label "desired font")
(constraint (or (string_equal (value version))

(string_equal (value listargs))))

;;; the input file name.

(arg_string input_name
(default)
(repeat (exactly 1))
(label "input file"))

;;; the output file name.

(arg_string output_name
(condition (clause (string-equal (input))

Integration Mechanism Design Knowledge Based Systems, Inc.

4 --

"> output.ps")

(clause (not (string_equal (input)))
(concatenate "> " (input))))

(default)

(repeat (exactly 1)

(label "output file"))
etc ...

Data Specification

This section describes the data required for the text2ps utility. This data

corresponds to the keys in the format class specifications for the utility. In

this case, both keys are pathnames. The first is the pathname of the input

file(s), and the second is the pathname of the output file.

;;; this is the data definition for the input data file

(datadef input_rUe
(label "input file")

(direction input))

;; this is the data definition for the output data file

(datadef output_rUe

(label "output file")

(direction output)

(existsif (not (string_equal (value output)))))

Invocation Specification for text2ps

The argument specifications determine the sequence in which the user (or

framework) is queried for information. However, the utility may expect a

different argument sequence. The argument sequence for the tool is

specified in the invocation specification. The invocation specification for the

text2ps tool (and the subset of arguments we have discussed) is as follows:

(command_args
(value version)

(value listargs)

(value font_name)

(value rotation_angle)
(value input_file)

(value output_file))

This example has shown how a service would be represented to the

Integration Mechanism. While the service advertisement and protocol

specifications occur at a relatively abstract level, the service contract

Integration Mechanism Design Knowledge Based Systems, Inc.

w

25

specification is very detailed and complex as the parameters and
requirements of the service utility must be explicitly defined. This
separation of abstract representation from utility description is required to
support a two stage planning process described in Section 4.2.3.1 that
makes service planning more efficient.

4.2 Integration Mechanism Design Description

With an understanding of how services are represented within the FPP

environment and of why they are represented that way, it is now possible to
discuss the design of the Integration Mechanism. The Integration
Mechanism has been broken down into four components: the Integration
Message Encoder/Decoder, the Plan Builder, the Plan Executor, and the
Service Registration Tool. Each of these components will be discussed in
further detail below.

4.2.1 Design Considerations

Before presenting the design of these components, however, the reader
should understand some of the factors that had to be considered when

producing the design of the Integration Mechanism. An understanding of
these concepts will allow a better feel for why the Integration Mechanism is
designed the way it is. The following paragraphs categorize the primary
design considerations.

. The working of the platform is controlled by the programmable
framework. The framework influences the operation of the Integration
Mechanism in many ways. Among the most significant are:

• Access control: user and application access to data, services and
tools can be defined with the framework.

• Enforce critical paths: many project plans contain certain critical
paths that define which activities must be completed before certain
other can be started. This constrains the services that can be
accessed.

• Constraint propagation: inter- and intra- project constraints often
are complex enough that their side effects will be implicit in other

parts of the project. This again constrains what the Integration
Mechanism can do for a service request.

set in the• Log design history: based on the requirement
framework, the detail of the ISM log can be controlled.

. Archiving successful service plans for reuse eliminates the overhead of

replanning each time that request is made. Logging plans that fail

during execution aids in generation of an error report to debug that
service. Keeping track of service requests that could not be satisfied by
existing services helps identify new services that need to be designed and
built.

Integration Mechanism Design Knowledge Based Systems, Inc.

6

. Detailed monitoring of the Integration Mechanism while providing a

service will not only aid in documenting development history, but also

serve to log illegal accesses, identify bottlenecks in service requests,

identify points of frequent failure, etc.

These considerations were a driving force in the development of the

Integration Mechanism design.

4.2.2 Integration Service Plans

The discussion of the Integration Mechanism Design to be presented in the

next section is driven by the process supported by the Integration

Mechanism. The operation of the IM revolves around the generation,
management, and execution of service plans. However, a discussion of a

system that produces and manipulates service plans would be difficult to
follow without some understanding of what a service plan actually is. This

section will describe the concept of a service plan.

In Section 2.2, the Integration Services strategy to providing an integrated

environment was presented and the Integration Mechanism has adopted

this strategy. The main concept in the integration services approach is the

service. A service is just a functional unit that performs a service to the

user. Normally, services are intended to be some operation that integrates

two or more existing CASE tools, though this is not a requirement. For

example, a service might be to translate an IDEF0 model produced by the

AIO into an IDEFO model readable by IDEFINE.

Given, that these services exist, there must be some means for telling the

Integration Mechanism that the services exist. In Section 4.1, the

structures by which a service can presented to the Integration Mechanism
was defined. This representation alone, however, is not enough. The

Integration Mechanism must have a strategy for manipulating these

service representations.

This is where the "service plan" enters the picture. A service plan is

simply a sequence of operations that, when performed, result in the

provision of the requested service. However, a service plan can exist on two

levels: the functional plan and the executable plan. The functional plan is

a sequence of service identifiers that when sequenced together provide the
requested service and is independent of any hardware or software

implementation details. It is in the generation of the functional plan that
true "planning" occurs. The object is to find a sequence of services that will

provide the requested service and this process is accomplished by

examining the service advertisements and protocols. It is only when a

functional plan is generated successfully that an executable plan is

produced. An executable plan is a sequence of machine operations derived

from the service contracts that will actually be executed to provide the

requested service.

Integration Mechanism Design Knowledge Based Systems, Inc.

27

These service plans, both functional and executable, are the mechanism by

which the integration services strategy will be implemented. The following

section on the design of the Integration Mechanism will detail exactly how

these service plans are produced, managed, and executed.

4.2.3 Integration Meclmnism Design

The following description details the current design of the Integration
Mechanism. Operationally, every machine that is part of the FPP will have

an implementation of the Integration Mechanism running. Each

Integration Mechanism will have access to information about all available
services and will have the ability to interpret service requests, build

executable service plans based on those requests, execute the service plans,

and finally collect and return the results of the service plans. Control over

this process will be defined by the Integration Mechanism and the Site

Specific Framework installed at the particular site.

Figure 5 shows the operation of the Integration Mechanism and the

interaction of the key components of the Integration Mechanism. The key

components include the service registration tool, the plan builder, the plan

executor/monitor, and the message decoder/encoder. Notice, however, that

all service requests, even single step services, initially pass through the

Plan Builder. Originally, the design incorporated another component that

would determine if a particular service were advertised and if so would

route the service request around the Plan Builder. However, after further

study, this other component tended to duplicate some of the functionality of
the Plan Builder (i.e., service advertisement lookup). To reduce this

duplication of effort, this extra component was combined with the Plan
Builder.

l

D

Service ec Build/Retrieve Execute_onitor
Request o Service Plan Plan Execution

d

e

FRAMEWORK

Service
Result

m

Plan/Service Register _ New
Repository Service ;ervice

Figure 5. Operation of the Integration Meclmnism

Integration Mechanism Design Knowledge Based Systems, Inc.

28

The operation of each of these components and the interaction between the
components will be discussed in the following sections. Also, an IDEFO

model of the Integration Mechanism Design can be found in Appendix B of
this document.

4.2.3.1 Plan Builder Component

The Plan Builder component of the Integration Mechanism is responsible

for generating the functional and executable plans required to satisfy

service requests received by the Integration Mechanism. Figure 6 shows

the operation of the Plan Builder. When the plan builder receives a service

request, it first checks to see if any planning is required. If the request is

for a simple service (i.e., a service plan of only one step) and that service is

advertised, the service request is simply passed on to the executable plan
generator.

If, however, the requested service is not advertised, the Plan Builder will

attempt to devise a plan to support this service through a two step process.
First, service plan databases are searched to see if a functional plan for this

service had been generated previously. This step implies that a library of

generated plans is maintained by the Plan Builder and, in fact, this will be

the case. Every successful plan generated by the Plan Builder will be

"checked in" to this library. The storage of these service plans will reduce

the requirements for planning when the same service is requested many
times.

Service

Request

m

D

e
c Builcl/Re'lYie_
o Service Plan

d

e

-r \Plan/S_rvice
Reposlt_ry

I L
X

Service

!
Build Functional | Generate Exec-

i1 t,u °n 'li
Check for] [Check ResourceExisting Plans Map

Figure 6. Operation of the Plan Builder

Integration Mechanism Design Knowledge Based Systems, Inc.

w

29

However, in the absence of a pregenerated plan, the planner attempts to
build a plan based on the knowledge stored about existing services and the

information provided in the service request. An attempt is first made at
building a functional plan. In doing this, the Plan Builder first examines
the service request to determine its source and destination formats.

Second, the format classes of the formats are determined, and a high level
(and rapid) search of the the service advertisements is done to determine

whether a plan can be built between the format classes. Next, a more
detailed search is done of the service protocols for the chosen service
advertisements. This search will discover whether or not there is a

sequence of services available that will go from the source format to the
destination format. If this sequence of services is discovered, it is recorded
as the functional plan and this plan will then be used to generate executable
plans.

An executable plan also takes several steps to produce. First, the service
protocols in the functional plan are examined to determine the service
contracts that are available to satisfy the service request. These service
contracts determine which utilities on which machines must be invoked to

provide the necessary services. The contracts also specify the types and
structure of the arguments necessary to invoke the utilities. The
arguments needed are collected from the framework and/or the user and

combined with the argument specification information to generate an
executable plan that is then passed to the plan executor.

It is possible that several executable plans may be generated from a single
functional plan. Which executable plans are generated and/or executed
will be controlled by user access privileges defined by the framework. In
order for the user to be able to use a service plan, the user must have the
authority, based on user roles defined by the Site Specific Framework, to
perform every step in the service plan. In the event that two or more

executable plans (for which the user has complete access) are generated for
a service request, factors that may be considered in choosing which
executable plan to execute are: the number of plan steps, the estimated
execution time of the plan, or user preference.

The Plan Builder also has the capability of plan validation before the plan is
submitted to the Plan Executor for execution. The validation check can

include data checks, service availability checks, and authorization checks.
Should the validation process fail, the Plan Builder can attempt to construct

a new service plan. Another aspect of the plan validation process is the
identification of steps in the service plan that require manual execution.
This situation might come about when dealing with legacy tools that do not

support invocation by the Integration Mechanism. While these legacy tools
may not support the remote execution capability, the tools can still provide
integration services. The only difference is that the steps in performing
that service will have to be performed manually. Indication as to whether a
service requires manual intervention should be provided with the service
registration, and, should be recognized by the plan builder during the plan

Integration Mechanism Design Knowledge Based Systems, Inc.

generation process. When a manual operation is detected, notification

should be sent to the user specifying exactly what operations need to be

performed to perform the integration service.

4.2.3.2 Plan Executor/Monitor Comvonent

The Plan Executor/Monitor (PEM) component of the Integration

Mechanism is responsible for executing the plans passed to it from the Plan

Builder and then monitoring the execution of these plans.

The executable plan details the services, programs, and data sets that need

to be invoked to fulfill an integration service. The PEM spawns processes
that govern each plan execution, thus preventing bottlenecks caused by a

plan waiting for an earlier one to complete and allowing multiple plans to

run concurrently. The plan is stepped through and appropriate local and

remote service calls (remote Integration Mechanism requests) are made.

It must be understood that the services are independent modules that could

be a simple operation on a data set, an interactive session, or even a full-
blown application (Figure 7). The piecemeal results of each step are

collated or passed on to the following execution step. The final results are

passed through the encoder before being returned to the caller to ensure

that the information being returned is in an understandable format.

If, at any stage of this process, the plan execution were to fail, the PEM

takes appropriate action according to information stored in framework or

specified by the service request. These actions include user intervention or

a request to the Plan Builder to replan either the whole plan or just the

failed section. Except for these possible interactions with the user, the

entire process of plan execution is completely transparentto the user.

Another important aspect of the PEM involves the issue of security and

access privileges. It must ensure that, during the execution of a service

plan, the processes are performed with the same access privileges of the
user requesting the service. This verification can occur on many different

levels. Certain access privileges, defined by the framework, deal with

access to certain integration services and processes and are detected by the

Plan Builder during the plan generation process. Other privileges deal
with access to remote machines. It may be the case that a user is not

authorized to log on to a certain machine and yet a service plan generated

for the user that requires execution of a service on that machine. It is
important that the PEM notice this constraint and not allow it to be violated.

In a situation where an access violation would occur, the PEM will notify

the user and indicate why the service is not being provided.

Integration Mechanism Design Knowledge Based Systems, Inc.

- 31

Service

Request
Service ,,.._

o \ Result "'-

---liD'- I Monitor Plan-A

I Step ll IStep2_ "1s,,,,,3r_
s i 1 _

s I

Interactive

Application

vice

"-'41_ I Monitor Plan-B 1

[Stepa. [Step1.:I [Stepl. I

Remote ISM/ISP

Figure 7. Operation of the Plan Executor

4.2.3.3 Decoder/Encoder Component

The Decoder/Encoder component of the Integration Mechanism is the

interface between the Integration Mechanism and the other components of

the FPP. All communications to and from the Integration Mechanism are

coded in the same format, called an external format in this discussion.

This is necessary to alleviate the need to reprogram the Integration

Mechanism to understand a new format each time a new component is

added to the FPP. This will also allow the Integration Mechanism to evolve

and change, as long as the communications interface standard is kept
intact.

Incoming messages, including service requests, data objects, pregenerated

plans, constraint sets to be used while planning, and replies from remote
Integration Mechanisms, are decoded from the external format and routed

to the appropriate Integration Mechanism component. Outgoing

messages, including requests for service definitions and predefined plans,

messages to the DOM for data objects, messages to an application or user
for intervention, and messages to a remote Integration Mechanism for a

service, are encoded into the external format and routed to the appropriate
FPP component.

Integration Mechanism Design Knowledge Based Systems, Inc.

2

4.2.3.4 Service Rea, istration Tool

The Service Registration Tool (SRT) is an interface designed to facilitate the
registration of services with the Integration Mechanism. It also allows for
the logging of service advertisements that it receives from remote
machines.

As discussed in Section 4.1, the Integration Mechanism requires that
certain information be specified about a service before it can be registered
with the Integration Mechanism. Figure 8 shows a template of the type of
information that will have to be captured by the Service Registration Tool.

Using the interface provided by the SRT, the user can browse existing
services in the service database, and build new services that use the

existing format and data types, or existing services. The user can also
define and register new formats and build new format classes
incorporating existing formats. Browsing existing services formats allows
the user to determine if there exists formats that may have a different
names but having the same structure and thus be included in the same
format class.

S_
R,

Format Class: <fcl> Format Class: <fc2>

name: text name: postscript

formats: (<fl>) formats: (<f2>)

key: padmame key: pathname
Format: <fl> Format: <f2>

name: ASCII text name: Adobe Postscript

version: n/a version: 2.1

primary class: <fcl> primary class: <re2>

can be treatedas: n/a can be treated as:n/a

Service Advertisement: <sal> Service Protocol: <spl>
source format class: text source format: <fl>

destination format class: postscript destination format: <f2>

protocols: (<spl>) service contracts: (<scl>)

Servke Contract: <scl> Utility:

utility: name: text2ps

argument specs.: [specified elsewhere] version: 1.04

data specification: [specified elsewhere] resources: MSDOS 3.0 or higher

invocation slPacture: [specified elsewhere] host: MTF/KAA PC
location: cAbin_text2ps.exe

env sp_: none
term codes:none

-h-p o o_£
V_:

I

I

I

l

l

ud

i •

_C _ ,,Ir \

Service
Result "_

New
Service

Figure & 8ez_ce Registration

Integration Mechanism Design Knowledge Based Systems, Inc.

33

Potential users of the tool would be vendors defining new services for their
tools, FPP Site Administrators defining new format classes, and users
registering new services for utilities they have produced.

While the other three components of the Integration Mechanism are closely
related, the Service Registration Tool stands on its own, and is used
separately from the other components. This tool interfaces with the other

components of the Integration Mechanism through the Plan/Service
Repository. This repository is just the collection of all the registered
services available to the FPP and is a partition of the System Resource
Definition Knowledge Base.

Note: This module may also provide an interface to the database of service
plans maintained by the Plan Builder and allow the user to browse and edit
those plans. Using such an interface the user could instruct the Plan
Builder to generate all possible plans for a particular transaction and then
choose the one that he would like to have executed. The facility to pre-can
plans is necessary as the required plans could be generated as the need for
them arises, thus eliminate planning on the fly.

Integration Mechanism Design Knowledge Based Systems, Inc.

34

5 Status and Future Directions

As the design of the Integration Mechanism has been the first step in the
design of the overall FPP, the previous sections have presented a snapshot
of the current FPP design. Future work will be directed first towards the

design of the Framework Processor and then towards the design of the
remaining components of the FPP.

5.1 Outstanding Design Issues

While the near term work on the FPP is to be directed towards the design of

the Framework Processor, there are still open issues concerning the design
and operation of the Integration Mechanism. This section is meant to
highlight areas of the current design that have potential deficiencies or
areas where possibility for change have been identified.

Separation of the Data Object Manager and the Integration Mechanism. In
the FPP Preliminary Design described in Section 3, the DOM and the
Integration Mechanism were shown to be distinct components. However,
in the later stages of the Integration Mechanism design, these components
seem to be grow closer together. They were initially separated in the design
to distinguish between data operations and function operations. It now
appears that, while the operations may be different, the operations of the
DOM and the Integration Mechanism might be handled in a single,
consistent fashion. This would allow the two components to be logically
combined, perhaps having the Integration Mechanism layered on top of the
DOM. The effect that this combination would have on the Integration
Mechanism is to require that all data operations be routed through the
Integration Mechanism.

Related to this point is the role the DOM will play in managing the service
information. The current design calls out for the service information to be

managed by the DOM so that a single representation can be maintained
across the entire platform. However, it is possible that performance issues
could require a change in this operational philosophy. An alternative
strategy might be to have service information maintained by the specific
Integration Mechanism with which the service is originally registered.
This Integration Mechanism could then "publish" the service information
to the other Integration Mechanisms. This option would also reduce the
amount of message traffic between the Service Registrar and the DOM.

Integration Mechanism Component Interface Protocols. The design of the
Integration Mechanism has partitioned the IM into four functional
components. However, protocols for communicating between these
components has not been established. These components may or may not
need formal protocols as the protocol may just be a function call. For
example, the plan builder may simply call the plan executor with a call
like:

(execute-plan <plan-object>).

Status and Future Directions Knowledge Based Systems, Inc.

- 35

Regardless of the degree of formality, as the design becomes more detailed,
these interfaces should be defined due to the distributed nature of the FPP.

Since the Integration Mechanism will run on many different platforms,
portability issues are very important to the definition of the Integration
Mechanism. Definition of these external component interfaces will make

portability easier by allowing components to be redesign, re-implemented or
replaced without impact on the other components.

External Interface for Service Registration. Section 4.1 detailed the format
in which service information will be represented to the Integration
Mechanism. It was also stated that this representation was an internal
format. In other words, the description detailed how the information would
appear to the Integration Mechanism. The format by which the service
information will be transmitted from the FPP administrator to the

Integration Mechanism has not been established. It is quite possible that a
combination of methods and interfaces will be required to support the
service registration process.

Service Query Language. No service query language for requesting the
execution of a service has been established. As the format of service plans,
both functional and executable, become more clear, it is expected that a
structure for the query language will be established.

Framework / Integration Mechanism Interaction. While the design of the
Integration Mechanism has made reference to the interaction between the
Integration Mechanism and the Site Specific Framework, the formal
mechanisms by which the two components will interact have not been
established. It is expected that the design of the Framework Processor, the
next step in the FPP design, will contribute to the definition of these
mechanism.

5.2 Requirements Matrix

It is important to recognize that the design of the Integration Mechanism
has been driven by the requirements established for the FPP. The matrix in
Figure 9 relates the requirements [FPP 90b] satisfied by the design of the
Integration Mechanism to the actual component of the Integration
Mechanism that satisfies the requirement. In many cases, a requirement
is satisfied through a combination of several Integration Mechanism
components.

Status and Future Directions Knowledge Based Systems, Inc.

2.4.2

2.9.1.1

2.9.4.1

2.9.4.2

2.9.4.3

2.9.4.4

2.9.4.5

2.9.4.6

3.1.3.3

3.2.1

3.2.2

3.2.3

3.2.4

3.3.1.1.2

3.3.2.1

3.3.2.2

3.3.2.3

3.3.2.4

3.3.2.5

4.4.1.1

4.4.1.2

4.4.1.2.1

4.4.1.3

4.4.2.1

4.4.2.2

4.4.4.3

4.4.4.4

4.4.4.5

4.4.4.6

4.4.4.6.1

4.4.4.7

4.4.4.7.1

4.4.5.1

4.4.5.1.1

4.4.5.2

Encoder /
Decoder

,/

V

Plan
Builder

V

V

i

V

V

Plan

V V

V

V

V

V

V

V

V

V

V

V

V

V

Figure 9. Integration Mechanism Requirements Matrix

Status and Future Directions Knowledge Based Systems, Inc.

- 37

As would be expected, the requirements satisfied deal directly with the
provision of a integrated development environment. However, not all
integration requirements are being satisfied entirely by the Integration
Mechanism since certain integration requirements extend past the scope of
the Integration Mechanism. The Integration Mechanism is responsible
primarily for the support of the integration services approach to
integration. Those integration aspects of the FPP that deal more with the
control of data and processes will be dealt with by other components of the
FPP, though the Integration Mechanism may play a contributing role.

Also, as the design of the Integration Mechanism will be open to

modifications, this requirements matrix will also be subject to changes. We
matrix shown above indicates those requirements that are either
completely or partially satisfied by the Integration Mechanism. As the
designs of the other FPP components are completed, the role the
Integration Mechanism plays in partially satisfying these requirements
will become more clear. As a result, the final requirements for the
Integration Mechanism will not be established until the design of the other
components is completed.

Status and Future Directions Knowledge Based Systems, Inc.

8

6 l_ferenc_

[Aho86] Aho, A.V., Sethi, R., and Ullman, J.D., Compilers:
Principles, Techniques, and Tools, Addison-Wesley, Reading, MA,
1986.

[CF191] Tool Encapsulation Specification, CAD Framework Initiative,
April 17, 1991.

[DKMS90] A Design Knowledge Management System (DKMS), SBIR
Phase I Final Report, April 1990, Knowledge Based Systems,
Incorporated. Contract F41622-89-C-1018, AFHRL, WPAFB.

[EIS86] The Department of Defense Requirements for Engineering
Information Systems: Volume 1 - Operational Concepts; Volume 2 -
Requirements. J.L. Linn, R.I. Winner, editors, EIS Requirements
Team, The Institute for Defense Analyses, Alexandria, Virginia.

[EIS 89] Engineering Information Systems: Volume 1 - Organization

and Concepts; Volume 2 - Specifications and Guidelines. Honeywell
Systems and Research Center, Minneapolis, MN, October, 1989.

[FPP90a] Framework Programmable Platform for the Advanced

Software Development Workstation: Concept of Operations Document.
Report to NASA and University of Houston-Clear Lake by Knowledge
Based Systems, Inc under subcontract SE.37, NCC9-I6. September,
1990.

[FPP90b] Framework Programmable Platform for the Advanced

Software Development Workstation: Requirements Document. Report
to NASA and University of Houston-Clear Lake by Knowledge Based
Systems, Inc. under subcontract SE.37, NCC9-16. November, 1990.

[I2S2 85] Judson, D.L., Integrated Information Support Systems, 1986;
Integrated Information Support System HISS): An Evolutionary
Approach to Integration, Manufacturing Technology Division,
Materials Laboratory, Air Force Wright Aeronautical Laboratories,
1985.

[IDS89] Integrated Design Support System (iDS) AFHRL-TR-89-6:
Volume I - Executive Overview; Volume H - IDS Introduction and

Summary; Volume III- IDS Requirements; Volume IV - IDS Task
Results; Volume V- IDS Software Documentation. AFHRL, WPAFB,
December 1989.

References Knowledge Based Systems, Inc.

39

A ADll_.ndi_ A- Service Representation I_n_ua_e Gmmmnr

This appendix contains the complete lexical and grammar specification for
the service contract argument specification, the service contract data
specification, the service contract invocation structure, the utility
environment specification, and the termination codes specification. These
specifications are used for both the knowledge store representation and
utility registration representation. All of these specifications are derived
from the CAD Framework Initiative (CFI) tool abstraction specification
[CFI 91].

Lexical Conventions

This section describes the lexical conventions used in the definition of the

specifications. Where necessary a regular definition [Aho 86] has been
provided to explicitly and unambiguously express a lexical item. The
lexical conventions are:

1) A semicolon (';') starts a comment and the comment is terminated by
the end of the line.

2) Spaces (' ') between tokens are optional. However, keywords must be
surrounded by spaces and newlines.

3) An identifier is made up of a letter followed by letters, digits, or
underscores. The regular definition form of an identifier is as follows:
letter ::= [a-zA-Z]
digit ::= [0-9]
identifier ::= letter (letter I digit [_)*

4) An integer is composed of optionally a plus or minus sign followed by at
least one digit. The integer regular definition is as follows:
digits ::= digit digit*

integer ::= (+ i -] e) digits

5) A real number may be represented either in decimal notation or
scientific notation. Therefore, a real number is represented by the
following regular definition:

fraction ::=. digits le

optional-exponent ::= ((E I e) (+ I - I e) digits) I e

real ::= (+ [- i e) digits fraction optional-exponent

6) A string is delimited by double quotes ('"') containing any printable
ASCII character.

Append_ A Knowledge Based Systems, Inc.

4O

Gr_mmRr Conventions

Shown below are the conventions for the grammar of the specifications.

The grammar is specified by listing its productions, with the productions
for the start symbol listed first.

1) non-terminal - Non-terminals symbols are represented in italics.

2) terminal - Terminal symbols are represented in bold. They represent
keywords in the language. The parenthesis contained in the grammar
are part of the specification. They are considered to be terminal
symbols. However they willnot be in bold.

3) An expression is made up of terminals, non-terminals, and other
complex expression built from rules 4 through 7.

4) {expression I expression I expression } The vertical bar ('l')
represents a selection of one and only one item from the set of
alternatives.

5) { expression }? - A question mark ('?') indicates that the expression can
occur zero or one times.

6) {expression }+ - A plus sign ('+') indicates that the expression can occur
one or more times.

7) {expression }* - An asterisk ('*') indicates that the expression can occur
zero or more times.

Notes:

1) The identifier in an argument abstraction is unique for the given

argument specification.

2) The expression (value identifier) returns the string value for a given

argument.

3) Within an argument specification the form (get_input) accesses the

value specified by the user for this argument. The type of the value
depends on the defining argument specification class. For example, in
arg_boolean argument specification (get_input) would return either
true or false.

argument-specification ::= ({ arg-boolean-decl l
arg-choice-decl I
arg-integer-decl l
arg-real-decl l
arg-string-decl }*)

Appendix A Knowledge Based Systems, Inc.

41

arg-boolean-decl ::= (arg_boolean
identifier
true-rewrite-rule?

false-rewrite-rule?
{(default { true I false }) }?
constraint-decl?

{(label string) }?

{ (description string) }?)

arg-choice-decl :: = (arg_choice
identifier
choice-decl choice-decl +
repeat-decl
constraint-decl?

{(label string) }?
{(description string) }?)

arg-integer-decl ::= (arg_integer
identifier
condition-decl?

{ (default integer) }?
{ (format { decimal I octal I hex})}?

{ (range range-decl) }?
{ (step integer) }?
repeat-decl?
constraint-decl?

{ (label string) }?
{ (description string) }?)

arg-real-decl ::= (arg_real
identifier
condition-decl?

{(default real) }?
{ (format scientific) }?

{ (range range-decl) }?
repeat-decl?
constraint-decl?

{ (label string) }?
{ (description string) }?)

arg-string-decl ::= (arg_string
identifier
condition-decl?

{ (default string) }?
{ (format { to_upper I to_lower }) }?
{ (length integer) }?
repeat-decl?
constraint-decl?

Appendix A Knowledge Based Systems, Inc.

choice-decl ::= (choice

{ (label string) }?

{ (description string) }?)

true -rewrite-rule?

false-rewrite-rule?

(default { true I false })

{ (label string) }?

{ (description string) }?)

true-rewrite-rule ::= (if_true string-value)

false-rewrite-rule ::= (if_false string-value)

constraint-decl ::= (constraint boolean-expression)

repeat-decl ::= (repeat range-decl delimiter-decl)

range-decl ::= exactly-decl I
at-most-decl I

at-least-decl l

greater-than-decl I
less-than-decl l

between-decl

exactly-decl ::= (exactly number-value)

at-most-decl ::= (almost number-value)

at-least-decl ::= (at_least number-value)

greater-than-decl ::= (greater_than number-value)

less-than-decl ::= (less_than number-value)

between-decl ::= (between { at-least-decl I greater-than-decl }

{ at-most-decl I less-than-decl })

delimiter-decl ::= (delimiters string-value string-value string-value)

string-value ::- string l

condition-expression I

(get_input) I ;; reference to a string argument

(value identifier) I

(concatenate string-value+)

condition-expression ::= (condition
{ (clause boolean-expression string-value) }+)

boolean-expression ::= true l

42

Appendix A Knowledge Based Systems, Inc.

- 43

false I

(get_input)l
(
(
(
(
(
(

;; reference to a boolean argument
and boolean-expression+) I
or boolean-expression+) i
xor boolean-expression+)]
not boolean-expression) i
equal number-value number-value) I
string_equal string-value string-value)

number-value ::= integer]real

data-definition ::= ({ (data_def
identifier

(direction {input I output I inout})
(arg_ref identifier)
{ (required if boolean-expression) }?
{ (exists if boolean-expression) }?) }*)

environment-specification ::= ({ (env string string-value) }*)

exit-code ::= ({ (result integer
{success I warning I error I failure}
{ (label string) }?) }*)

Appendix A Knowledge Based Systems, Inc.

4 m

B Auvendi_ B - Integration Mee_hAni._m Functional Model

The following pages show the IDEF_ Functional Model of the current FPP
Integration Mechanism design. These diagrams show activities that will
be performed by the Integration Mechanism, the relationships between
those activities, and the controls on and the mechanisms for performing
those activities.

When building or examining an IDEF_ model, it is important to establish
and understand the point of view from which the model is defined. This

point of view is defined in the following statements.

Purpose:

To define the major functions of the Integration Mechanism and to show
the relationships among these functions.

Viewpoint:

This modeled is presented from the viewpoint of the Integration
Mechanism of the FPP.

Context:

This model exists in the context of providing integration services to the
users of the FPP.

Because of the point of view established for this model, the following model
does not incorporate the Service Registration component. The reason for
this is that the Registration utility operates separately from the more

common operations of the other Integration Mechanism components.

Appendix B Knowledge Based Systems, Inc.

i'

o

¢o
E

_o

3

t,Q
U_

|+:.:.:+

0

0

!

l

i !

E.

0
"."3

N

0

"8
Z

l

o

i _.

J_
I"

JJ

L_
0

om

I_

0
om

om

0
I.

_i _ _ _

_i _ __!•-_ ._ _
0_o

.u _ ..,?.,_ a

"_ o °= ._ .,= o= .., "'

¢) ,-, _.._ '_ .,-, .._ _ .'_ .,,.,,

"_ _ "= _ ,.,

•,-. _:_ _ _'' ;=;-=

c_

it-
t'-

_d
f_

11

i'b
• i

• li

i

°_ _'

L_

r_

L_

_t

E_
z

c
°_

I

ii i i

IJil

IJ

r w -

i ,IL' _

i •

i

tt

__|

"0
o

• p,,q _

-_._

E o
a._

.= E

g

_ ._ _ _ _ .

|

c_
mum

"o
imm
oul

imq

ol-q _

_ Imo

w

_o

D

D
i

D

,,-o

° !

,
-$_ -_

I

U

]
i

!

i

!

,-,j

]

i

I

I
I

g

DII

Ill
|ll
III

t
li

! •

11
| .i
a,!

l|

IJ

7

I
I
i

m

o_

om

• _ _._

It

I

! .
I' °

ii:
l:i

4

I

m

m

0
om

L..

• o__

_, ''_I

"_.

-_ ._ _ "_
=._ _,,

m

m

°,,=_

r_

_3

C_

=_._
0 g_J

I

• in a
II I I

Illl

e

!]
I

I

I=

m

4,)

=1

t
l

1

t

q
.[

.j

.tl

W
,,ii

I 0 8

!

!

J:

|-

J J

_l| 8

1

i

m Din,

|

r_

@
su

m

_S

im

_D

C_
_J
C_

o=_ _

o= :i.I _ t_

C_

I I I
i

!

!

• I

II

'.,_ g '-'

_ _ _'_ ,-_ _

,= _

it

I

I

J
IJ

°

!|"

itJ r

LI
I

1

!

oi oi
_ _ _ _ _'_

.., _ __: .__

ORIGINAL PAGE IS
OF PO0_ QU/U.JTY

GLOSSARY

build plan requests

These are information queries generated by the components of the build plan activity.

These include:

1) requests to the DOM for a library

2) requests for plan information

3) requests to archive (permanently store) a newly generated plan.

See the glossary entry for each of these items for more information.

control messages

These are messages received by the ISM that contain control information from the

application/user, DOM, or remote ISM. These include:

1) planning control commands

2) functional library plan from DOM

See the glossary entry for each of these for more information.

data messages

These are messages received by the ISM that contain data information from the

application/user, DOM, or remote ISM. These include:

1) planning data

2) remote ISM results

3) requested service

4) service data

See the glossary entry for each of these for more information.

decoder

This is the portion of the ISM responsible for decoding and routing messages sent to

the ISM to the appropriate internal component.

encoder

This is the portion of the ISM responsible for encoding and routing messages from the

ISM to the other components of the FPP/ASDW.

executable plan

This is a series of commands to be executed in order to complete a service request.

This is somewhat analogous to a BAT file on a PC or a script file on a UNIX machine.

Some example command types are:

1) requests to remote ISMs for services

2) data requests

3) tool invocations

execute plan requests

This is a collection

include:

of requests from the plan execution components. These may

1) requests for service data

2) remote ISM requests

execute plan results

These are the products of the execution of the service plan.

framework

This is a site specific collection of system definition and system development

processes, system architecture descriptions, and method classification matrices.

functional plan

This is a hardware/software independent description of a service plan. Several

executable plans may be built from a single function plan.

input messages

This is a collection of messages to be processed by the ISM. These may include:

1) DOM requests/replies

2) remote ISM requests/replies

3) application requests/replies

/SM

This is the Integration Services Manager portion of the Framework Programmable

Platform for the Advanced Software Development Workstation (FPP/ASDW) system.

It is composed of the following components: encoder, plan builder, plan executor, and

decoder.

library functional plan from DOM

This is a copy of a functional plan stored in the DOM.

messages from local environment

This is communication to the controlling process from the spawned process or the

operating system.

messages to the local environment

This is communication from the controlling process to the spawned process or the

operating system.

output messages

This is a collection of messages produced by the ISM. These may include:

1) DOM requests

2) remote ISM requests

3) application requests/replies

plan builder

This is the component of the ISM responsible for generating an executable plan that,

when executed, will satisfy a service request.

plan executor

This is the portion of the ISM responsible for executing an executable plan.

plan step

This is a single instruction from an executable plan.

plan step results

These are the results of the execution of a plan step.

planning control commands

These are commands from applications, remote ISMs, or other external entities that

influence the workings of the ISM. These may include: 1) commands to halt

processing of the current process, 2) commands to view/modify/replan plans, and 3)

commands to synchronize activities associated with manual portions of a plan.

planning data

This is data needed in the plan generation activities. This may include:

1) tool service advertisements for the generation of functional plans

2) tool protocol and contract specification information used in the

generation of executable plans

remote ISM results

These are the results of remote ISM service executions.

request for library functional plan from DOM

This is a request to the DOM for a particular functional plan that it may have stored i2

its library.

request for new plan

This is a request from the plan executor to the plan builder for a new plan. This is

generated when, for some reason, the plan executor is unable to carry out the

instructions of an executable plan.

request for planning data

This is a data request that may be sent to the DOM or to the application. Some

examples include:

Requests for tool information for building functional and executable plans.

request for service data

This is a request generated by the plan processor for information ne_ed in the

execution of a plan step.

request to archive plan

This is a request sent to the DOM to store a newly created functional plan into the

library of plans.

request to log failed service request

This is generated when a functional plan could not be developed to satisfy a service

request. The unfulfilled service request will be stored in a

log for future reference.

request to remote ISM

This request is generated by the plan executor when a step in the plan it is executing

cannot be carried out on the local machine. The request is routed via the encoder to the8

appropriate ISM and the results of the request are returned to the plan executor (via th5

decoder).

requested service

This is the decoded request for a service.

service data

This is data used by the plan executor to carry out the execution of a plan.

service to plan

This is a service that needs to be planned. This is generated when a functional plan

could not be found in the plan library to fulfill the service request.

